博客
关于我
利用pandas做数据分析统计应用---统计二胎年龄差距
阅读量:376 次
发布时间:2019-03-05

本文共 918 字,大约阅读时间需要 3 分钟。

源码和数据文件见上述链接。

本文数据提取自深圳市2019年某次公租房申请公示名单,移除了非身份证的数据。

import pandas as pdimport matplotlib.pyplot as plt '''粗略统计二胎年龄差距se 为1 主申请人,多数为爸爸se为2共同申请人,多为妈妈和孩子se为0,others'''#difage = []class family:	def __init__(self):		self.mainpyear= None		self.comPyear=[]		self.diff = []	def diff_age(self):		if len(self.comPyear)>2:			self.comPyear = sorted(self.comPyear, reverse = True)			#print(self.comPyear)			if( self.comPyear[0]-self.comPyear[1]<18):				self.diff.append( self.comPyear[0]-self.comPyear[1])		self.comPyear=[]if __name__ == '__main__':				b= pd.read_csv('a.csv', sep=',', dtype = {'id':str})	b['year']=pd.to_numeric(b['id'].str[6:10])	myf = family()	for key,row in b.iterrows():		if( row['se']==1):			myf.mainpyear = row['year']			myf.diff_age()		elif( row['se']==2):			myf.comPyear.append(row['year'])			#myf.diff_age()		#print(myf.diff)	a = pd.Series(myf.diff)	a.plot.hist(bins =19 )	plt.show()

 

结论:二胎年龄差距,2,3岁的家庭最多。

转载地址:http://tfpg.baihongyu.com/

你可能感兴趣的文章
Netty工作笔记0007---NIO的三大核心组件关系
查看>>
Netty工作笔记0008---NIO的Buffer的机制及子类
查看>>
Netty工作笔记0009---Channel基本介绍
查看>>
Netty工作笔记0010---Channel应用案例1
查看>>
Netty工作笔记0011---Channel应用案例2
查看>>
Netty工作笔记0012---Channel应用案例3
查看>>
Netty工作笔记0013---Channel应用案例4Copy图片
查看>>
Netty工作笔记0014---Buffer类型化和只读
查看>>
Netty工作笔记0015---MappedByteBuffer使用
查看>>
Netty工作笔记0016---Buffer的分散和聚合
查看>>
Netty工作笔记0017---Channel和Buffer梳理
查看>>
Netty工作笔记0018---Selector介绍和原理
查看>>
Netty工作笔记0019---Selector API介绍
查看>>
Netty工作笔记0020---Selectionkey在NIO体系
查看>>
Netty工作笔记0021---NIO编写,快速入门---编写服务器
查看>>
Netty工作笔记0022---NIO快速入门--编写客户端
查看>>
Vue踩坑笔记 - 关于vue静态资源引入的问题
查看>>
Netty工作笔记0024---SelectionKey API
查看>>
Netty工作笔记0025---SocketChannel API
查看>>
Netty工作笔记0026---NIO 网络编程应用--群聊系统1---编写服务器1
查看>>